
Algorithms for solving sequential
(zero-sum) games 

Main case in these slides: chess

Slide pack by

Tuomas Sandholm

Rich history of cumulative ideas

Game-theoretic perspective

•  Game of perfect information

•  Finite game

–  Finite action sets

–  Finite length

•  Chess has a solution: win/tie/lose (Nash equilibrium)

•  Subgame perfect Nash equilibrium (via backward

induction)

•  REALITY: computational complexity bounds

rationality

Chess game tree

Opening books (available on CD)

Example opening where the book goes 16 moves (32 plies) deep

Minimax algorithm (not all branches are shown)

Deeper example of minimax search

ABJKL is equally good

Search depth pathology

•  Beal (1980) and Nau (1982, 83) analyzed whether values backed up by minimax

search are more trustworthy than the heuristic values themselves. The analyses of
the model showed that backed-up values are somewhat less trustworthy

•  Anomaly goes away if sibling nodes’ values are highly correlated [Beal 1982,
Bratko & Gams 1982, Nau 1982]

•  Pearl (1984) partly disagreed with this conclusion, and claimed that while strong
dependencies between sibling nodes can eliminate the pathology, practical games
like chess don’t possess dependencies of sufficient strength.

–  He pointed out that few chess positions are so strong that they cannot be spoiled abruptly if one
really tries hard to do so.

–  He concluded that success of minimax is “based on the fact that common games do not possess a
uniform structure but are riddled with early terminal positions, colloquially named blunders, pitfalls
or traps. Close ancestors of such traps carry more reliable evaluations than the rest of the nodes, and
when more of these ancestors are exposed by the search, the decisions become more valid.”

•  Still not fully understood. For new results, see, e.g., Sadikov, Bratko,
Kononenko. (2003)
Search versus Knowledge: An Empirical Study of Minimax on KRK, In: van den
Herik, Iida and Heinz (eds.) Advances in Computer Games: Many Games, Many
Challenges, Kluwer Academic Publishers, pp. 33-44

α-β -pruning

α-β -search on ongoing example

α-β -search

Complexity of α-β -search

Evaluation function

•  Difference (between
player and opponent) of

–  Material

–  Mobility

–  King position

–  Bishop pair

–  Rook pair

–  Open rook files

–  Control of center

(piecewise)

–  Others

Values of knight’s position in Deep Blue

Evaluation function...

•  Deep Blue used ~6,000 different features in its evaluation function (in

hardware)

•  A different weighting of these features is downloaded to the chips after

every real world move (based on current situation on the board)

–  Contributed to strong positional play

•  Acquiring the weights for Deep Blue

–  Weight learning based on a database of 900 grand master games (~120 features)

•  Alter weight of one feature => 5-6 ply search => if matches better with grand master
play, then alter that parameter in the same direction further

•  Least-squares with no search

–  Other learning is possible, e.g. Tesauroʼs Backgammon

•  Solves credit assignment problem

•  Was confined to linear combination of features

–  Manually: Grand master Joel Benjamin played take-back chess. At possible
errors, the evaluation was broken down, visualized, and weighting possibly
changed

Deep Blue is brute force
 Smart search and knowledge

engineered evaluation

Horizon problem

Ways to tame the horizon effect

•  Quiescence search

–  Evaluation function (domain specific) returns another
number in addition to evaluation: stability

•  Threats

•  Other

–  Continue search (beyond normal horizon) if position is
unstable

–  Introduces variance in search time

•  Singular extension

–  Domain independent

–  A node is searched deeper if its value is much better

than its siblingsʼ

–  Even 30-40 ply

–  A variant is used by Deep Blue

Transpositions

Transpositions are important

Transposition table

•  Store millions of positions in a hash table to avoid searching them again

–  Position

–  Hash code

–  Score

–  Exact / upper bound / lower bound

–  Depth of searched tree rooted at the position

–  Best move to make at the position

•  Algorithm

–  When a position P is arrived at, the hash table is probed

–  If there is a match, and

•  new_depth(P) ≤ stored_depth(P), and

•  score in the table is exact, or the bound on the score is sufficient to cause the move

leading to P to be inferior to some other choice

–  then P is assigned the attributes from the table

–  else computer scores (by direct evaluation or search (old best move searched

first)) P and stores the new attributes in the table

•  Fills up => replacement strategies

–  Keep positions with greater searched tree depth under them

–  Keep positions with more searched nodes under them

Search tree illustrating the use of a transposition table

End game databases

Generating databases for solvable
subgames

•  State space = {WTM, BTM} x {all possible configurations of
remaining pieces}

•  BTM table, WTM table, legal moves connect states between
these

•  Start at terminal positions: mate, stalemate, immediate
capture without compensation (=reduction). Mark whiteʼs
wins by won-in-0

•  Mark unclassified WTM positions that allow a move to a won-
in-0 by won-in-1 (store the associated move)

•  Mark unclassified BTM positions as won-in-2 if forced moved
to won-in-1 position

•  Repeat this until no more labellings occurred

•  Do the same for black

•  Remaining positions are draws

Compact representation methods to help endgame
database representation & generation

Endgame databases…

Endgame databases…

How end game databases changed chess

•  All 5 piece endgames solved (can have > 10^8 states) &
many 6 piece

–  KRBKNN (~10^11 states): longest path-to-reduction 223

•  Rule changes

–  Max number of moves from capture/pawn move to

completion

•  Chess knowledge

–  Splitting rook from king in KRKQ

–  KRKN game was thought to be a draw, but

•  White wins in 51% of WTM

•  White wins in 87% of BTM

Endgame databases…

Deep Blueʼs search

•  ~200 million moves / second = 3.6 * 10^10 moves in 3
minutes

•  3 min corresponds to

–  ~7 plies of uniform depth minimax search

–  10-14 plies of uniform depth alpha-beta search

•  1 sec corresponds to 380 years of human thinking time

•  Software searches first

–  Selective and singular extensions

•  Specialized hardware searches last 5 ply

Deep Blueʼs hardware

•  32-node RS6000 SP multicomputer

•  Each node had

–  1 IBM Power2 Super Chip (P2SC)

–  16 chess chips

•  Move generation (often takes 40-50% of time)

•  Evaluation

•  Some endgame heuristics & small endgame databases

•  32 Gbyte opening & endgame database

Role of computing power

Kasparov lost to Deep Blue in 1997

•  Win-loss-draw-draw-draw-loss

–  (In even-numbered games, Deep Blue played white)

Future directions

•  Engineering

–  Better evaluation functions for chess

–  Faster hardware

–  Empirically better search algorithms

–  Learning from examples and especially from self-play

–  There already are grandmaster-level programs that run on a

regular PC, e.g., Fritz

•  Fun

–  Harder games, e.g. Go

–  Easier games, e.g., checkers (some openings solved [2005])

•  Science

–  Extending game theory with normative models of bounded

rationality

–  Developing normative (e.g. decision theoretic) search algorithms

•  MGSS* [Russell&Wefald 1991] is an example of a first step

•  Conspiracy numbers

•  Impacts are beyond just chess

–  Impacts of faster hardware

–  Impacts of game theory with bounded rationality, e.g. auctions,

voting, electronic commerce, coalition formation

