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Rich history of cumulative ideas




Game-theoretic perspective


•  Game of perfect information

•  Finite game


–  Finite action sets

–  Finite length


•  Chess has a solution: win/tie/lose (Nash equilibrium)

•  Subgame perfect Nash equilibrium (via backward 

induction)

•  REALITY: computational complexity bounds 

rationality




Chess game tree




Opening books (available on CD)

Example opening where the book goes 16 moves (32 plies) deep




Minimax algorithm (not all branches are shown)




Deeper example of minimax search


ABJKL is equally good






Search depth pathology

•  Beal (1980) and Nau (1982, 83) analyzed whether values backed up by minimax 

search are more trustworthy than the heuristic values themselves. The analyses of 
the model showed that backed-up values are somewhat less trustworthy


•  Anomaly goes away if sibling nodes’ values are highly correlated [Beal 1982, 
Bratko & Gams 1982, Nau 1982]


•  Pearl (1984) partly disagreed with this conclusion, and claimed that while strong 
dependencies between sibling nodes can eliminate the pathology, practical games 
like chess don’t possess dependencies of sufficient strength. 


–  He pointed out that few chess positions are so strong that they cannot be spoiled abruptly if one 
really tries hard to do so. 


–  He concluded that success of minimax is “based on the fact that common games do not possess a 
uniform structure but are riddled with early terminal positions, colloquially named blunders, pitfalls 
or traps. Close ancestors of such traps carry more reliable evaluations than the rest of the nodes, and 
when more of these ancestors are exposed by the search, the decisions become more valid.”


•  Still not fully understood.  For new results, see, e.g., Sadikov, Bratko, 
Kononenko. (2003)  
Search versus Knowledge: An Empirical Study of Minimax on KRK, In: van den 
Herik, Iida and Heinz (eds.) Advances in Computer Games: Many Games, Many 
Challenges, Kluwer Academic Publishers, pp. 33-44 




α-β -pruning




α-β -search on ongoing example




α-β -search




Complexity of α-β -search




Evaluation function


•  Difference (between 
player and opponent) of

–  Material

–  Mobility

–  King position

–  Bishop pair

–  Rook pair

–  Open rook files

–  Control of center 

(piecewise)

–  Others


Values of knight’s position in Deep Blue




Evaluation function...

•  Deep Blue used ~6,000 different features in its evaluation function (in 

hardware)

•  A different weighting of these features is downloaded to the chips after 

every real world move (based on current situation on the board)

–  Contributed to strong positional play


•  Acquiring the weights for Deep Blue

–  Weight learning based on a database of 900 grand master games (~120 features)


•  Alter weight of one feature => 5-6 ply search => if matches better with grand master 
play, then alter that parameter in the same direction further


•  Least-squares with no search

–  Other learning is possible, e.g. Tesauroʼs Backgammon 


•  Solves credit assignment problem

•  Was confined to linear combination of features


–  Manually: Grand master Joel Benjamin played take-back chess.  At possible 
errors, the evaluation was broken down, visualized, and weighting possibly 
changed


Deep Blue is brute force
 Smart search and knowledge

engineered evaluation






Horizon problem




Ways to tame the horizon effect

•  Quiescence search


–  Evaluation function (domain specific) returns another 
number in addition to evaluation: stability

•  Threats

•  Other


–  Continue search (beyond normal horizon) if position is 
unstable


–  Introduces variance in search time

•  Singular extension


–  Domain independent

–  A node is searched deeper if its value is much better 

than its siblingsʼ

–  Even 30-40 ply

–  A variant is used by Deep Blue




Transpositions




Transpositions are important




Transposition table

•  Store millions of positions in a hash table to avoid searching them again


–  Position

–  Hash code

–  Score

–  Exact / upper bound / lower bound

–  Depth of searched tree rooted at the position

–  Best move to make at the position


•  Algorithm

–  When a position P is arrived at, the hash table is probed

–  If there is a match, and


•  new_depth(P) ≤ stored_depth(P), and

•  score in the table is exact, or the bound on the score is sufficient to cause the move 

leading to P to be inferior to some other choice

–  then P is assigned the attributes from the table

–  else computer scores (by direct evaluation or search (old best move searched 

first)) P and stores the new attributes in the table

•  Fills up => replacement strategies


–  Keep positions with greater searched tree depth under them

–  Keep positions with more searched nodes under them




Search tree illustrating the use of a transposition table




End game databases




Generating databases for solvable 
subgames


•  State space = {WTM, BTM} x {all possible configurations of 
remaining pieces}


•  BTM table, WTM table, legal moves connect states between 
these


•  Start at terminal positions: mate, stalemate, immediate 
capture without compensation (=reduction).  Mark whiteʼs 
wins by won-in-0


•  Mark unclassified WTM positions that allow a move to a won-
in-0 by won-in-1 (store the associated move)


•  Mark unclassified BTM positions as won-in-2 if forced moved 
to won-in-1 position


•  Repeat this until no more labellings occurred

•  Do the same for black

•  Remaining positions are draws




Compact representation methods to help endgame 
database representation & generation




Endgame databases…




Endgame databases…




How end game databases changed chess


•  All 5 piece endgames solved (can have > 10^8 states) & 
many 6 piece

–  KRBKNN (~10^11 states): longest path-to-reduction 223


•  Rule changes

–  Max number of moves from capture/pawn move to 

completion

•  Chess knowledge


–  Splitting rook from king in KRKQ

–  KRKN game was thought to be a draw, but


•  White wins in 51% of WTM

•  White wins in 87% of BTM




Endgame databases…




Deep Blueʼs search


•  ~200 million moves / second = 3.6 * 10^10 moves in 3 
minutes


•  3 min corresponds to

–  ~7 plies of uniform depth minimax search

–  10-14 plies of uniform depth alpha-beta search


•  1 sec corresponds to 380 years of human thinking time

•  Software searches first


–  Selective and singular extensions


•  Specialized hardware searches last 5 ply 




Deep Blueʼs hardware


•  32-node RS6000 SP multicomputer

•  Each node had


–  1 IBM Power2 Super Chip (P2SC)

–  16 chess chips


•  Move generation (often takes 40-50% of time)

•  Evaluation

•  Some endgame heuristics & small endgame databases


•  32 Gbyte opening & endgame database




Role of computing power




Kasparov lost to Deep Blue in 1997


•  Win-loss-draw-draw-draw-loss

–  (In even-numbered games, Deep Blue played white)




Future directions

•  Engineering


–  Better evaluation functions for chess

–  Faster hardware

–  Empirically better search algorithms

–  Learning from examples and especially from self-play

–  There already are grandmaster-level programs that run on a 

regular PC, e.g., Fritz

•  Fun


–  Harder games, e.g. Go

–  Easier games, e.g., checkers (some openings solved [2005])


•  Science

–  Extending game theory with normative models of bounded 

rationality

–  Developing normative (e.g. decision theoretic) search algorithms


•  MGSS* [Russell&Wefald 1991] is an example of a first step

•  Conspiracy numbers


•  Impacts are beyond just chess

–  Impacts of faster hardware

–  Impacts of game theory with bounded rationality, e.g. auctions, 

voting, electronic commerce, coalition formation



